UrologySchool.com

ANDROLOGY: NORMAL ERECTILE PHYSIOLOGY

See Penis Anatomy Chapter Notes

Neuroanatomy and neurophysiology of penile erection
Hemodynamics and mechanisms of erection and detumescence
Types of erections (3):
  1. Psychogenic erection:
    • Occur in response to visual or sensory erotic stimulation to the cerebral cortex
    • The centrally perceived sensual input is relayed by neural signals to a spinal cord neural center located at T11-L2 (the thoracolumbar erection/psychogenic arousal center)
  2. Reflexogenic erection:
    • Result of tactile stimulation of the genital organs
    • The impulses reach the spinal erection centers (T11-L2 and S2-S4); some then follow the ascending tract, resulting in sensory perception, whereas others activate the autonomic nuclei to send messages via the parasympathetic cavernous nerves to the penis to induce erection.
    • Reflexogenic erection is preserved in 95% of patients with complete upper cord lesions [above S2] but in only about 25% of patients with complete lower cord lesions
  3. Nocturnal erection: occurs mostly during rapid eye movement (REM) sleep
Ejaculation
Questions
  1. Explain the physiology of an erection
  2. Why does the corpus spongiosum not become as rigid as the corpora cavernosae?
  3. Describe the autonomic innervation and somatic involved in erection?
  4. What is the main neurotransmitter involved in erection? Where is it released from? What is its function? What enzyme synthesizes it? Which enzyme subtype is responsible for initiation vs. maintenance of erection?
  5. What is the principal neurotransmitter involved in detumesence?
  6. Which phosphodiesterase subtypes are found in the corpus cavernosum? Which subtype is the main one mediating detumescence?
  7. What are the phases of detumescence?
  8. What are the 3 types of erection? Which is most likely preserved on a patient with upper spinal cord injury?
Answers
  1. Explain the physiology of an erection
    • In the flaccid state, the cavernous smooth muscle and the smooth muscles of the arteriolar and arterial wall are tonically contracted, allowing only a small amount of arterial flow into the corpora
    • Sexual stimulation triggers release of neurotransmitters from the cavernous nerve terminals. This release of neurotransmitters results in relaxation of these smooth muscles results in
      • Increased blood inflow
      • Decreased blood outflow
      • Increase in PO2 and intracavernous pressure
  2. Why does the corpus spongiosum not become as rigid as the corpora cavernosae?
    • The corpus spongiosum lacks the outer longitudinal layer of the tunica albuginea
  3. Describe the autonomic innervation and somatic involved in erection?
    • Parasympathetic (S2-S4): erection
    • Sympathetic (T10-T12): detumesence, emission
    • Somatic (S2-S4, Onuf nucleus): pudendal nerve is responsible for sensation and contraction of the ischiocavernosus and bulbocavernosus/bulbospongiosus muscles (and external urethral sphincter)
  4. What is the main neurotransmitter involved in erection? Where is it released from? What is its function? What enzyme synthesizes it? Which enzyme subtype is responsible for initiation vs. maintenance of erection?
    • Nitric oxide
    • Non-adrenergic, non-cholinergic nerve terminals and the endothelium
    • Stimulate production of cGMP by activation guanylate cyclase in smooth muscle; increased cGMP in smooth muscle stimulates relaxation
    • Nitric oxide synthase; nNOS for initiation, eNOS for maintenance
  5. What is the principal neurotransmitter involved in detumesence?
    • Norepinephrine
  6. Which phosphodiesterase subtypes are found in the corpus cavernosum? Which subtype is the main one mediating detumescence?
    • All except PDE6, which is exclusively in the photoreceptors of the eye
    • PDE5
  7. What are the phases of detumescence?
  8. What are the 3 types of erection? Which is most likely preserved on a patient with upper spinal cord injury?
    • Nocturnal, psychologic, and reflexogenic
    • Reflexogenic
References