Prostate Cancer: Epidemiology and Pathogenesis: Difference between revisions

From UrologySchool.com
Jump to navigation Jump to search
No edit summary
Replaced content with "== Epidemiology[https://pubmed.ncbi.nlm.nih.gov/33538338][https://seer.cancer.gov/statfacts/html/prost.html][https://www.ncbi.nlm.nih.gov/pubmed/32122974] =="
Line 1: Line 1:
Epidemiology[https://pubmed.ncbi.nlm.nih.gov/33538338][https://seer.cancer.gov/statfacts/html/prost.html][https://www.ncbi.nlm.nih.gov/pubmed/32122974]
== Epidemiology[https://pubmed.ncbi.nlm.nih.gov/33538338][https://seer.cancer.gov/statfacts/html/prost.html][https://www.ncbi.nlm.nih.gov/pubmed/32122974] ==
<li><strong>Incidence</strong>
  <ul>
    <li><strong>Highest in countries with  the highest rates of screening</strong></li>
    <li><strong>Worldwide</strong>
      <ul>
        <li>2nd most common visceral malignancy in men</li>
        <li><strong>Estimated incidence 2020: 1,414,259</strong></li>
      </ul>
    </li>
    <li><strong>US</strong>
      <ul>
        <li><strong><span class="red">Most common visceral malignancy  in men</span></strong></li>
        <li><strong>Estimated  incidence 2021: 248,530</strong>
          <ul>
            <li><strong>≈1/8 males are diagnosed with  prostate cancer during their lifetime</strong></li>
              </ul>
            </li>
          </ul>
        </li>
    <li>Canada Statistics
      <ul>
        <li>Most common malignancy in males <ul>
            <li>Followed by lung and bronchus (13.2%) and colorectal (12.9%)</li>
           
                    <li>In females, most common cancers are breast (25%), lung and bronchus (13.5%), and colorectal (10.9%)</li>
              </ul>
            </li>
        <li>Estimated cancer incidence 2020: 220,400 </li>
        <li>Estimated prostate cancer incidence 2020: 23,300
          <ul>
            <li>11.3% (≈1/9 men) lifetime probability of prostate cancer diagnosis in males </li>
              </ul>
        </li>
          </ul>
    </li>
    <li><strong>Trends in incidence</strong>
              <ul>
                <li><strong>PSA</strong> was discovered in 1979 and was <strong>licensed as a test by the FDA in 1986. </strong>Thereafter, the <strong>incidence of prostate cancer increased significantly, peaking  in 1992, </strong>≈5 years after  the introduction of the PSA test<strong>. </strong></li>
                <li><strong>Incidence then declined until 1995 (screening responsible  for decrease i.e. there were now fewer people with prostate cancer in the source population as they had been screen-detected)</strong></li>
                <li><strong>Since 1995, incidence increased at a rate similar to pre-PSA screening era, and  fluctuated year-to-year since 2001 until 2011 when the draft of the 2012 <a href="../../CNotes/Prostate Cancer/pcascreening.html#uspstf">US Preventative Services Task Force  recommendations</a> came out recommending against PSA screening in all males (grade D).</strong></li>
              </ul>
    </li>
    <li><strong>Median age at diagnosis: 67</strong>
      <ul>
        <li><strong>Incidence has  increased in younger males and decreased in older males, largely account for by PSA  screening</strong></li>
        <li><strong>Men with prostate cancer younger  than 50 years account for 2% of all cases</strong> </li>
          </ul>
    </li>
      </ul>
</li>
  <li><strong><span class="red">Mortality</span></strong>
    <ul>
      <li><strong><span class="red">Cause of  death in ≈3% of US men</span></strong>
        <ul>
          <li><strong>Only ≈16% of males diagnosed with  prostate cancer ultimately die of it, </strong>demonstrating the indolent course of  most prostate cancers</li>
          <li><strong>Most common cause of mortality in males with prostate  cancer is cardiac disease</strong><a href="https://pubmed.ncbi.nlm.nih.gov/23795786/">§</a></li>
            </ul>
      </li>
     
      <li><strong><span class="red">2nd leading cause of  cancer-related death</span></strong> (lung is 1st);  </li>
      <li><strong>Trends in Mortality</strong>
        <ul>
          <li><strong>Decreasing since 2001</strong></li>
            </ul>
      </li>
      <li>Average age of death from prostate cancer  is 77 years </li>
      <li>Mortality in African-Americans 2.4x higher  than Caucasians</li>
        </ul>
  </li>
  <li><strong>Trends in stage</strong>
        <ul>
          <li>There has been clinical and pathological stage migration over  time largely due to PSA screening</li>
          <li>At the time of diagnosis<a href="https://seer.cancer.gov/archive/csr/1975_2014/browse_csr.php?sectionSEL=23&pageSEL=sect_23_table.08.html#table3">&sect;</a>
            <ul>
              <li> ≈<strong>80% present with localized disease</strong></li>
              <li>≈12% present with regional disease</li>
              <li>≈ 5% present with metastatic disease</li>
            </ul>
          </li>
        </ul>
  </li>
</ul>
<h5><strong><span class="red"><a name="pcriskfactors">Pathogenesis</a></span></strong></h5>
    <ul>
      <li><strong><span class="red">Risk factors (5):</span></strong>
      </li>
    </ul>
    <ol>
      <ol>
        <li><strong><span class="red">Age</span></strong></li>
        <li><strong><span class="red">Ethnicity</span></strong>
          <ul>
            <li><strong><span class="red">Incidence in African-American &gt; Caucasians &gt;</span> </strong><strong>Hispanic/Latino &gt; Asian-American</strong>            </li>
            <li>Men of Asian descent living in the US have  a lower incidence compared to white Americans, but their risk is higher than  that of Asians living in Asia, suggesting a dietary, lifestyle, environmental  factor</li>
          </ul>
        </li>
        <li><strong><span class="red">Family history</span></strong>
          <ul>
            <li>≈15% of prostate cancer patients have the  familial or hereditary form</li>
            <li>Risk varies according to the number of affected  family numbers, their degree of relatedness, and the age at which they were  affected
              <ul>
                <li>Father  affected: relative risk (RR) 2.2x</li>
                <li>Brother  affected: RR 3.4x</li>
                <li>First-degree  family member affected, age &lt;65 at diagnosis: RR 3.3x</li>
                <li>&gt;2  first-degree relatives affected: RR 5.1x</li>
                <li>Second-degree  relative affected: RR 1.7x            </li>
              </ul>
            </li>
          </ul>
        </li>
        <li><strong><span class="red">Germline mutations</span></strong>
          <ul>
            <li><strong><span class="red">Genes that substantially increase risk: </span></strong>
              <ol>
                <li><strong><span class="red">HOXB13 </span></strong></li>
                <li><strong><span class="red"> BRCA </span></strong>
                </li>
              </ol>
              <ul>
                <ul>
                  <li><strong><span class="red">BRCA-associated, especially  BRCA2, cancers are more aggressive</span></strong>
                    <ul>
                      <li>More likely to present with higher grade, locally advanced,  and metastatic disease, and have worse cancer-specific survival and metastasis-free survival after  prostatectomy</li>
                      <li>2-6x increased lifetime risk (BRCA2 &gt; BRCA1)</li>
                      <li>Increased risk of metastatsis and prostate cancer-specific mortality<a href="https://pubmed.ncbi.nlm.nih.gov/25454609/">§</a></li>
                    </ul>
                  </li>
                  <li><strong name="brcacancers"><span class="red"><a name="brcacancers">BRCA-cancers: breast, ovarian,  pancreatic, prostate, melanoma</a></span> </strong></li>
                </ul>
              </ul>
            </li>
            <li><strong name="pritchard2016"><span class="purple"><a name="pritchard2016">Incidence of germline  mutations in genes mediating DNA-repair processes in prostate cancer (2016)</a></span></strong>
              <ul>
                <li>Population:  692 men</li>
                <li><strong>Results:</strong>             
                  <ul>
                    <li><strong>Incidence of <span class="red">germline  mutations in genes mediating DNA-repair </span>processes was significantly  higher in males with <span class="red">metastatic prostate cancer (11.8%)</span> compared  to males with localized prostate cancer (4.6%) and the <span class="red">general  population (2.7%)</span> </strong></li>
                  </ul>
                </li>
                <li><a href="https://www.nejm.org/doi/full/10.1056/NEJMoa1603144">Pritchard et al. NEJM 2016</a></li>
              </ul>
            </li>
            <li><strong><span class="red">Lynch syndrome<a href="https://cebp.aacrjournals.org/content/23/3/437 ">§</a></span></strong><u> </u>
              <ul>
                <li>Due to mutation in mismatch repair genes</li>
                <li><strong>Associated cancers: (8) colonic (most common), endometrial (second most common), prostate, urothelial, adrenal, gastric, pancreatic, uterine, ovarian, and sebaceous carcinomas</strong></li>
              </ul>
            </li>
          </ul>
        </li>
        <li><strong><span class="red">Inflammation</span></strong>
          <ul>
            <li>Likely contributes  to development and progression of early-stage disease</li>
            <li>Potential triggers for inflammation  include dietary carcinogens (especially from cooked meats), <strong>estrogens</strong>,  and infectious agents</li>
            <li>Studies assessing the association between  infection and prostate cancer have shown mixed results; some data suggest that  history of STIs and prostatitis is associated with increased risk of prostate  cancer</li>
          </ul>
        </li>
      </ol>
      <ul>
        <li><strong>Polymorphisms</strong> in both synthetic  and metabolic genes, including the <strong>androgen receptor (AR), the 5-alpha  reductase type 2 isoenzyme</strong>, and genes involved in testosterone  biosynthesis, have been reported to affect risk</li>
        <li><strong>Insulin-like growth factor </strong>axis is  important in prostate cancer risk and progression</li>
        <li><strong>Polymorphisms conferring lower vitamin D  receptor activity</strong> are associated with increased risk for  prostate cancer; vitamin D and its interaction with its receptor modulates  disease aggressiveness</li>
        <li><strong>Smoking  increases risk and is associated with worse biochemical recurrence, metastasis,  and cancer-specific mortality</strong></li>
        <li>Mixed results with alcohol</li>
      </ul>
    </ol>
    <h5><strong>Molecular Genetics</strong></h5>
    <ul>
      <li>Biologic  functions of known prostate cancer susceptibility genes include:
        <ol>
          <li>Control of the inflammatory response</li>
          <li>Homeobox genes</li>
          <li>DNA repair mechanisms</li>
          <li>Susceptibility to infection </li>
        </ol>
      </li>
      <li><strong><span class="red">Most common gene fusion identified in localized prostate cancer  involves TMPRSS2</span></strong> or  other promoters (SLC45A3, HERPUD1, or NDRG) <strong><span class="red">fused to ERG (ETS-related gene)</span></strong></li>
      <ul>
        <li><strong>The  TMPRSS2 gene is prostate specific, and is expressed in both benign and  malignant prostatic epithelium; </strong></li>
        <li><strong>TMPRSS2:ERG fusion gene is detected in  ≈50% of prostate cancers</strong></li>
        <li><strong> TMPRSS2-ERG fusion gene is present in  prostate stem cells</strong></li>
        <li><strong>TMPRSS2  expression has been shown to be induced by androgens</strong></li>
        <li><strong>TRMPSS2-related  gene fusions are highly specific for the presence of prostate cancer</strong></li>
      </ul>
      <li>Most common point mutations in prostate  cancer are mutations in SPOP, which encodes a subunit of ubiquitin ligase</li>
      <li>Current evidence suggests that most  prostate cancer is polygenic in origin. GWAS studies have identified more than  70 risk alleles and chromosomal loci, many of which occur in non-coding areas of  the genome. A variety of genes implicated in prostate cancer initiation and  progression include</li>
      <ul>
        <li>Hypermethylation of</li>
        <ul>
          <li>Hormonal  response genes (ERαA, ERβ, and RARβ)</li>
          <li>Genes  controlling the cell cycle (CyclinD2 and 14-3-3σ)</li>
          <li>Tumor  cell invasion/tumor architecture genes (CD44)</li>
          <li>DNA  repair genes (GSTpi, GPX3, and GSTM1)</li>
          <li>Tumor  suppressor genes (APC, RASSF1α, DKK3, p16INK4?−α, E-cadherin, and p57WAF1)</li>
          <li>Signal transduction  genes (EDNRB and SFRP1)</li>
          <li>Inflammatory  response genes (PTGS/COX2)</li>
        </ul>
        <li>Hypomethylation of CAGE, HPSE, and PLAU</li>
        <li>Histone hypoacetylation of CAR, CPA3,  RARB, and VDR</li>
        <li>Histone methylation of GSTP1 and PSA</li>
      </ul>
      <li>Epigenetic mechanisms active in prostate  cancer include:
        <ol>
          <li>Chromatin remodeling</li>
          <li>Promoter hypomethylation and  hypermethylation</li>
          <li>MicroRNAs that lead to gene silencing</li>
          <li>Long non-coding RNAs </li>
        </ol>
      </li>
    </ul>
    <h5><strong><span class="red">Questions</span></strong></h5>
    <ol>
      <li>What proportion of US males are diagnosed with prostate cancer during their lifetime?      </li>
      <li>Which germline mutations      are associated with increased risk of prostate cancer?      </li>
      <li>What are the BRCA2 related      cancers?      </li>
      <li>Which 5 ARI subtype (type      1 vs 2) is predominantly in the prostate? Also found in the brain?      </li>
      <li>What is the most common      gene fusion identified in localized prostate cancer? </li>
    </ol>
    <p>&nbsp;</p>
      <h5><strong><span class="red">Answers</span></strong></h5>
    <ol>
        <li>What proportion of US males are diagnosed with prostate cancer during their lifetime?
          <ul>
            <li>≈1/7-1/9</li>
          </ul>
        </li>
          <li>Which germline mutations      are associated with increased risk of prostate cancer?
            <ul>
              <li>HOXB13 and BRCA2</li>
            </ul>
          </li>
          <li>What are the BRCA2 related      cancers?
            <ul>
              <li>Breast, ovarian, prostate, pancreatic, melanoma</li>
            </ul>
          </li>
          <li>Which 5 ARI subtype (type      1 vs 2) is predominantly in the prostate? Also found in the brain?
            <ul>
              <li>Type 2 is primarily in the prostate and other genital        tissues such as the epididymis, genitalia, seminal vesicle, testis, but        also in liver, uterus, breast, hair follicles, and placenta</li>
              <li>Type 1 is primarily in the non-genital skin and        liver, and also found in the prostate, testis, and brain </li>
            </ul>
          </li>
      <li>What is the most common      gene fusion identified in localized prostate cancer?          </li>
          <ul>
            <li>TMPRSS2 fused to ERG      </li></ul></ol>
    <h5><span class="teal">Next Chapter: </span><a href="pcaprevention.html">Prevention</a>      </h5>
      <h5>References</h5>
      <ul>
        <li>Wein AJ, Kavoussi LR, Partin AW, Peters CA (eds): CAMPBELL-WALSH UROLOGY, ed 11. Philadelphia, Elsevier, 2015,  chap 107</li>
    </ul>
      <p>&nbsp;</p>

Revision as of 13:06, 9 December 2021

Epidemiology[1][2][3]